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1. Introduction

Much has been written about the increasing importance of intellectual property, and

industries based upon it, in the U.S. economy. Even ignoring the recent �dot-com bub-

ble,� the list of the largest Þrms in the U.S. economy is increasingly dominated by Þrms

operating in industries in which innovation is central to a Þrm�s success. Competition

in such �new economy� industries is often said to possess characteristics that are quite

different from those of traditional �old economy� industries. As Evans and Schmalensee

[2002] succinctly put it,

�...Þrms engage in dynamic competition for the market � usually through
research-and development (R&D) to develop the �killer� product, service, or
feature that will confer market leadership and thus diminish or eliminate
actual or potential rivals. Static price/output competition on the margin in
the market is less important.�

In the wake of these changes, and sparked by the recent Microsoft case, a number

of commentators have expressed the concern that traditional antitrust analysis � which

has typically ignored almost entirely issues of innovation � might be poorly suited to

maximizing welfare in such industries.1

In the Microsoft case, for example, the most signiÞcant issue in evaluating the welfare

effects of Microsoft�s allegedly anticompetitive practices was almost surely their effect on

innovation. In essence, Microsoft argued that while a technological leader like Microsoft

may possess a good deal of static market power, this is merely the fuel for stimulating

dynamic competition, a process that it argued worked well in the industry. The govern-

ment, in contrast, argued that Microsoft�s practices prevented entry of new Þrms and

products, and therefore would both raise prices and retard innovation. (For further dis-

cussion, see e.g., Evans and Schmalensee [2002] and Whinston [2001].) How to reconcile

1For an example of such an argument, see again Evans and Schmalensee [2002]. Issues of innovation
have been considered when discussing �innovation markets� in some horizontal merger cases, where there
was a concern that a merger might reduce R&D competition. See, e.g., Gilbert and Sunshine [1995].
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these two views, however, was never fully clear in the discussion surrounding the case.

For example, if proÞts are necessary for spurring innovation as Microsoft argued, does

this mean that practices that enhance a dominant Þrm�s ability to protect its monopoly

position will spur innovation?2

In this paper, we study the role of antitrust policy in innovative (�dynamically com-

petitive�) industries. We do so using models in which innovation is a continual process,

with new innovators replacing current incumbents, and holding dominant market posi-

tions until they are themselves replaced. Although a great deal of formal modeling of

R&D races has occurred in the industrial organization literature (beginning with the

work of Loury [1979] and Lee and Wilde [1980]; see Reinganum [1989] for a survey), this

work has typically analyzed a single, or at most a Þnite sequence, of innovative races.3

Instead, our models are closer to those that have received attention in the recent litera-

ture on growth (e.g., Grossman and Helpman [1991], Aghion and Howitt [1992], Aghion

et. al [2001]). The primary distinction between our analysis and the analysis in this

growth literature lies in our explicit focus on how antitrust policies affect equilibrium in

such industries.4

The paper is organized as follows. In Section 2, we introduce and analyze a simple

stylized model of antitrust in an innovative industry. This simple model, in which only

2Note that there is a potentially important distinction here between a policy that restricts Microsoft�s
behavior and a policy that restricts the behavior of all dominant software producers. The former type
of policy is sure to increase the likelihood of success of today�s potential entrants. However, the relevant
question concerns the latter type of policy, which may not increase innovative activity, because today�s
potential entrants are spurred precisely by the hope of becoming the next Microsoft.

3One exception is O�Donohue et al. [1998] who use a continuing innovation model to examine optimal
patent policy. In Section 3.5 we discuss the relation of our analysis to their paper.

4The growth literature often considers how changes in various parameters will affect the rate of
innovation, sometimes even calling such parameters measures of the degree of antitrust policy (e.g.,
Aghion et al. [2001] refer to the elasticity of substitution as such a measure). Here we are much more
explicit than is the growth literature about what antitrust policies toward speciÞc practices do. This
is not a minor difference, as our results differ substantially from those that might be inferred from the
parameter changes considered in the growth literature. As one example, one would get exactly the
wrong conclusion if one extrapolated results showing that more inelastic demand functions lead to more
R&D (e.g., Aghion and Howitt [1992]) to mean that allowing an incumbent to enhance its market power
through long-term contracts leads to more R&D.
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potential entrants conduct R&D, captures antitrust policy as affecting the proÞt ßows

that an incumbent and a new entrant can earn in competition with each other, as well

as the proÞts of an uncontested incumbent. Using the model, we develop some general

insights into the effect of antitrust policies on the rate of innovation. We show that

a more protective antitrust policy (one that increases a new entrant�s proÞts at the

expense of the incumbent) �front-loads� an innovative new entrant�s proÞt stream, and

that this feature tends to increase the level of innovative activity by potential entrants

to the industry. Indeed, as long as a more protective policy dissipates neither the joint

proÞt of the incumbent and entrant upon entry nor uncontested incumbent proÞts, it will

increase the level of R&D. We also explore extensions of the model to situations of free

entry, to growing markets, and to predatory activities that affect an entrant�s probability

of survival.

With the stylized model of Section 2 in hand, in Section 3 we develop applications to

speciÞc antitrust polices. First, we study a model of long-term (exclusive) contracts and

show that a more protective antitrust policy necessarily stimulates innovation and raises

both aggregate and consumer welfare. Next, we study a model of predatory pricing. Once

again, a more protective policy necessarily stimulates R&D in our model, although we

show that the welfare implications are in general ambiguous. We also discuss voluntary

deals between the incumbent and entrant, such as licensing deals or collusive agreements,

which can also be seen to necessarily increase the rate of innovation. All three of these

applications have the feature that a more protective policy (one that enhances entrant

proÞts) increases the rate of innovation. We conclude Section 3 by discussing an extension

of our long-term contracting model to the case of uncertain innovation size with a Þxed

cost of implementing new innovations. We show that in this situation, a more protective

policy may retard innovation. The key new feature in this model is that the antitrust

policy has a �selection effect,� altering the set of innovations that enter the market. In

some cases, this factor can lead a more protective policy to reduce innovation and welfare.
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The analysis of Sections 2 and 3 makes the strong assumption that only potential

entrants do R&D. While useful for gaining understanding, this assumption is rarely de-

scriptive of reality. In Section 4 (still incomplete), we turn our attention to models in

which both incumbents and potential entrants conduct R&D. Introducing incumbent

investment has the potential to substantially complicate our analysis by making equilib-

rium behavior depend on the level of the incumbent�s lead over other Þrms. We study two

models in which we can avoid this state dependence. In one model, the previous leading

technology is assumed to enter the public domain whenever the incumbent innovates.

In this model, the incumbent does R&D solely to avoid displacement by a rival. In our

second model, the proÞt improvement from a larger lead is assumed to be linear in the

size of the lead and potential entrants are assumed to win all �ties,� which again leads

the incumbent�s optimal R&D level to be stationary. In this model, the incumbent does

R&D to improve its proÞt ßows until the time that it is displaced by a rival. Interest-

ingly, we show that in both models there are a wide range of circumstances in which a

more protective policy can increase the innovation incentives of both the incumbent and

potential entrants.

Finally, Section 5 (to be added) concludes.

2. A Simple Model of Antitrust in Innovative Industries

We begin by considering a simple stylized model of continuing innovation. Our aim

in this section is to develop a model that yields some general insights into the effect of

antitrust policies on the rate of innovation, and that we can apply to a number of different

antitrust policies in the remainder of the paper. The model has discrete time and an

inÞnite horizon. There are N + 1 Þrms who discount future proÞts at rate δ ∈ (0, 1).
In each period, one of the Þrms is the �incumbent� I and the others are �potential

entrants,� denoted collectively by E. In the beginning of each period, each potential

entrant i independently chooses its R&D rate, φi ∈ [0, 1]; the cost of R&D is given by
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the convex function c(φi).5 (Note that in this simple model only the potential entrants

may do R&D; we relax this assumption to consider incumbent investment in Section 4).

The R&D of a given potential entrant i yields an innovation � which we interpret to be

a particular improvement in the quality of the product � with probability φi. We shall

focus on symmetric equilibria, in which all potential entrants choose the same equilibrium

level of R&D, denoted by φ. In this case, the likelihood that at least one Þrm among

the N potential entrants innovates is given by s(φ, N) ≡
h
1− (1− φ)N

i
. Among the

potential entrants who discover the innovation, only one may receive the patent for that

innovation. Given that all other potential entrants are doing R&D at level φ, we denote

by r(φ, N) the probability that a given potential entrant receives a patent, conditional

on it making a discovery.6 A potential entrant who is successful at receiving a patent

enters and competes with the incumbent in the present period, and then becomes the

incumbent in the next period, while the previous incumbent then becomes a potential

entrant. In this sense, this is a model of �winner-take-all� competition. While the patent

provides perfect protection (forever) to the innovation itself, others may overtake the

patent holder by developing subsequent innovations.

We will be interested in the effects of an antitrust policy α that affects the incumbent�s

competition with an entrant who has just received a patent. To this end, we denote the

incumbent�s proÞt in competition with a new entrant by πI (α), and the proÞt of the

entrant by πE (α), which we assume are differentiable functions of α. We let π0E (α) > 0,

so that a higher α represents a policy that is more �protective� of the entrant. We also

denote by the differentiable function πm(α) the per period proÞt of an incumbent who

5Note that c(·) must be convex if Þrms can randomize over their R&D strategies.
6When the patent is awarded randomly to one of the successful innovators, we have

r(φ, N) =
N−1X
k=0

µ
1

k + 1

¶µ
N − 1
k

¶
φk(1− φ)N−1−k.

It should be noted, however, that the results of this section hold for any functions r(φ, N) and s(φ, N); for
example, there may be some probability that none of the Þrms that have made discoveries are successful
in commercializing its product.
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faces no competition. (In Section 3, when we consider speciÞc applications, we show

how these values can be derived from an underlying model of the product market.) We

assume that

πE (α) +

Ã
δ

1− δ
!
πm(α) > c

0(0) (A1)

and Ã
πE (α) + δπI(α)

N + δ

!
< c0(1). (A2)

Assumption (A1) will imply that it is worth doing a little R&D if no one else is doing

any R&D; it ensures a positive level of R&D in equilibrium. Assumption (A2) will imply

that the probability of successful innovation is below 1 in equilibrium.

We examine stationary Markov perfect equilibria of the inÞnite-horizon game using

the dynamic programming approach. Let VI denote the expected present discounted

proÞts of an incumbent, and VE those of a potential entrant (both evaluated in the

beginning of a period). Then, since innovation occurs with probability φ, these values

should satisfy

VI = πm (α) + δVI + s(φ, N) [πI (α)− πm(α) + δ (VE − VI)] , (VI)

VE = δVE + φr(φ, N) [πE (α) + δ (VI − VE)]− c (φ) . (VE)

Also, since a potential entrant�s choice of φ should maximize its expected discounted

value given that all other potential entrants are choosing R&D level φ,

φ ∈ arg max
ψ∈[0,1]

{ψr(φ, N) [πE (α) + δ (VI − VE)]− c (ψ)} .

LettingW ≡ r(φ, N)[πE (α)+δ (VI − VE)] denote the expected beneÞt from successful
innovation � what we shall call the innovation prize � this equation can be rewritten
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Figure 2.1:

as

φ ∈ arg max
ψ∈[0,1]

{ψW − c (ψ)} . (IS)

Note that the convexity of c(·) implies that the set of maximizers in (IS) is a non-empty
and convex set.

This equation deÞnes the �Innovation Supply� curve�the optimal innovation choice

as a function of W . Note that this curve, which we depict in Figure 2.1, is (weakly)

upward sloping by the Monotone Selection Theorem (Milgrom and Shannon [1994]).

Consider now the determinants of W . Subtracting (VE) from (VI), we can write [to

simplify notation, we suppress the arguments of s(φ, N) and r(φ, N)]:

(VI − VE) = sπI (α) + (1− s)πm(α)− φrπE (α) + c (φ)
1− δ + δ(s+ φr) . (2.1)

Since W ≡ r(φ, N)[πE (α) + δ (VI − VE)], substituting from (2.1) lets us solve for the
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Figure 2.2:

equilibrium value of the innovation prize W :

W = r

(
πE (α) + δ

"
sπI (α) + (1− s)πm(α)− φrπE (α) + c (φ)

1− δ + δ(s+ φr)
#)

= r

(
πE (α) {1− δ + δ[s+ φr]}+ δ[sπI (α) + (1− s)πm(α)− φrπE (α) + c (φ)]

1− δ + δ(s+ φr)
)

= r

(
πE (α) (1− δ) + δ {s[πI (α) + πE (α)] + [1− s]πm(α) + c (φ)}

1− δ + δ(s+ φr)
)
. (IB)

This equation deÞnes the �Innovation BeneÞt� curve � the value of the innovation prize

as a function of the per Þrm innovation rate φ. An equilibrium pair (W,φ) must lie at

an intersection of (IS) and (IB), as shown in Figure 2.2 where there are three equilibria.

Note that the (IS) curve does not depend on α at all. By Theorem 1 of Milgrom and

Roberts [1994], if α shifts the (IB) curve up or down at all values of φ, then it increases

or reduces the equilibrium innovation rate in the �largest� and �smallest� equilibria

(denoted by φ and φ respectively in Figure 2.2). This can be seen in Figure 2.2, where

the dashed curve represents an upward shift of the IB curve. As is also evident in the

Þgure, the same can be shown (using the Implicit Function Theorem) of any �stable�
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equilibrium if the IB function is shifted up or down in a neighborhood of the equilibrium.7

Differentiating (IB) with respect to α then yields the following result:

Proposition 2.1. Under assumptions (A1) and (A2), an increase in α, the protective-

ness of antitrust policy, increases (decreases) the rate of innovation in the equilibria with

the highest and lowest innovation rates if

π0E (α) + δ

"
(1− s)π0m (α) + sπ0I (α)

1− δ(1− s)
#
≥ (≤) 0 (2.2)

at all feasible s.8 Moreover, the change in a stable equilibrium�s innovation rate in

response to a local change in α is positive (negative) if and only if (2.2) holds at the

equilibrium level of s.

Condition (2.2) indicates that a change in policy encourages (discourages) innovation

precisely when it raises (reduces) the incremental expected discounted proÞts over an

innovation�s lifetime: The Þrst term on the left side of (2.2) is the change in an entrant�s

proÞt in the period of entry due to the policy change, while the second term is equal to

the change in the value of a continuing incumbent (the numerator is the derivative of

the ßow of expected proÞts in each period of incumbency conditional on still being an

incumbent; the denominator captures the �effective� discount rate, which includes the

probability of displacement), and thus of the entrant�s value once it is itself established

as the incumbent.

In interpreting condition (2.2), it is also helpful to think about the case in which the

monopoly proÞt πm is independent of α, so that π0m(α) = 0. In this case, condition (2.2)

tells us that the innovation rate φ increases if

π0E (α) +

"
δs

1− δ(1− s)
#
π0I (α) ≥ 0.

7When there is a unique equilibrium, this result then implies determinate comparative statics. Equi-
librium can be shown to be unique, for example, when N = 1, c0(φ) ≥ 0, and c00(φ) > 0.

8The set of feasible s is {s : s = s(φ, N) for some φ ∈ [0, 1]}.
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Thus, when π0m(α) = 0, innovation increases if a weighted sum of πE (α) and πI (α)

increases, where the weight on πE (α) exceeds the weight on πI (α) due to discounting

(δ < 1). This implies that a more protective antitrust policy raises innovation whenever

π0I (α) + π
0
E (α) ≥ 0; that is, provided that an increase in α does not lower the joint

proÞts of the entrant and the incumbent in the period of entry. Intuitively, observe that

a successful innovator earns πE(α) when he enters, and earns πI(α) when he is displaced.

A more protective antitrust policy that raises πE and lowers πI shifts proÞts forward in

time. Since the later proÞts πI are discounted by potential entrants this �front loading�

of proÞts necessarily increases the innovation prize provided that the joint proÞt πI +πE

does not decrease.

Observe also that the weight on π0I (α) is increasing in s and in δ. The larger is δ or s,

the more likely is a more protective policy to reduce innovation: For s, this is so because

larger s moves forward the expected date when the entrant will itself be replaced. For δ,

this is so because with larger δ the discounted value of the proÞts in the period in which

the entrant is replaced are greater. In the limit, as δ → 1, the amount by which the joint

proÞt πE + πI can be dissipated while still encouraging innovation converges to zero: in

this limiting case, the cost of a one dollar reduction in the value πI that the entrant will

receive when he is ultimately displaced is exactly equal to the gain from receiving a dollar

more in the period in which he enters.

2.1. More general proÞt functions

In general, all three of the proÞts πI , πE, and πm may be affected as well by the rate of

innovation s (this is true, for example, in the model of long-term contracts in Section

3.2). Denoting these proÞts by πI(α, s), πE(α, s), and πm(α, s), we see that the derivation

leading to Proposition 2.1 continues to hold in this case, since it involves asking when

the IB curve is shifted upward at a particular value of s. Thus, we need only reinterpret

the derivatives in (2.2) as being partial derivatives with respect to α holding s Þxed.
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2.2. Free entry

In some circumstances it may be more appropriate to assume that there is free entry into

R&D competition.9 This assumption can be interpreted as a limiting case in which the

number N of potential entrants engaging in R&D is very large. We still focus on the

symmetric equilibrium in which all entrants choose the same R&D level φ ∈ (0, 1), but
in the limit where N is large, each entrant chooses a positive but inÞnitesimal φ. The

Þrst-order condition for such inÞnitesimal innovation choice is

W = c0 (0) . (2.3)

Also, substituting φ = c (φ) = 0 and writing r as a function of s in (IB), we have10

W = r(s)

(
πE (α) (1− δ) + δ{s[πI(α) + πE(α)] + (1− s)πm(α)]}

1− δ + δs
)
. (2.4)

The two equations describe the IS and IB curves in (W, s) space, which are depicted in

Figure 2.3 (note that the IS curve is horizontal).

Differentiating expression (2.4) with respect to α, we see that an increase in α increases

the aggregate success rate s if and only if (2.2) holds; that is, under exactly the same

conditions as when N is Þxed.

9The Þxed N model is the appropriate model when there are a limited number of Þrms with the
capability of doing R&D in an industry (perhaps because of some complementary assets they possess
due to participation in related industries).
10SpeciÞcally, if the patent is awarded with equal probability among those Þrms that make a discovery,

we have

r(s) = s+
X∞

k=1

µ
1

k + 1

¶µ
s

1 + s

¶k
.
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Figure 2.3:

2.3. Market growth

Above we noted how the �front loading� of the proÞts from successful innovation caused

by a more protective antitrust policy raises the innovation prize, and hence the equilib-

rium rate of innovation. This same logic suggests, however, that in situations in which

market size is growing rapidly � so that the future looms large relative to the present

� such front-loading may no longer encourage innovation. To see this point, consider

the simplest possible case of market growth, in which the proÞt functions in period 1 are

βπE(α), βπI(α), and βπm, but are πE(α), πI(α), and πm(α) beginning in period 2. The

market is initially growing if β < 1.

Starting in period 2, the market is stationary, and the equilibrium values and in-

novation rate are exactly those derived above. Denote these, as before, as VE, VI , W ,

and φ. Denoting the R&D level of each potential entrant in period 1 by φ1 and letting

r1 ≡ r(φ1, N), the period 1 innovation prize W1 is given by

W1 = r1[βπE(α) + δ(V1 − V0)].
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By analogy with condition (2.2), the policy change increases the rate of innovation in

period 1 if and only if

βπ0E (α) + δ

"
(1− s)π0m (α) + sπ0I (α)

1− δ(1− s)
#
≥ 0,

since only the proÞts in period 1 are affected by the market growth term β.11 Thus, with

market growth (β < 1), an increase in α that has no effect on πm may lower the rate of

innovation during the growth phase even if it raises the joint proÞt πI + πE.12

2.4. Predatory activities

In the analysis to this point, antitrust policy altered the proÞts earned by the incumbent

and the entrant when entry occurs, πI and πE, and possibly the proÞts of an uncontested

incumbent πm. In some situations, antitrust may affect as well the entrant�s probability

of survival. Here we focus solely on this effect. SpeciÞcally, we take πI , πE, and πm as

Þxed and suppose that a new entrant�s probability of survival following its entry is λ(α)

where λ(·) is increasing in α. As before, we focus here on the case in which the number
of Þrms N is Þxed.

Now the innovation prize is

W = r[πE + δλ(α)(VI − VE)]. (2.5)

If (VI − VE)were Þxed, an increase in α would necessarily increase innovation. Now,

11This expression can alternatively be derived by solving explicitly for W1.
12Note that we have focused to this point on stationary antitrust policies. The present result suggests

that it may be of interest to consider policies that vary over time with market conditions, such as the
current market size or growth rate.
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VI = πm + δVI + s(φ, N) [πI − πm + δλ(α) (VE − VI)] , (VI-2)

VE = δVE + φr(φ, N) [πE + δλ(α) (VI − VE)]− c (φ) , (VE-2)

so that

VI − VE = sπI + (1− s)πm − φrπE + c(φ)
1− δ + δλ(α)(s+ φr) . (2.6)

We see then that an increase in α lowers (VI − VE). Substituting, however, gives

W = r

(
πE +

Ã
δλ(α)

1− δ + δλ(α)(s+ φr)
!
[sπI + (1− s) πm − φrπE + c(φ)]

)
. (2.7)

The fraction δλ(α)/[1−δ+δλ(α)(s+φr)] is increasing in α. Thus, we see from 2.6 thatW
is increasing in α provided that (VI−VE) is positive.13 Hence, provided that (VI −VE) is
positive, a more protective antitrust policy that raises the likelihood of entrant survival

necessarily increases the innovation prize. As can be seen in (2.5), this change would

clearly increase W if we were to hold (VI − VE) Þxed. Yet, even though (VI − VE) is
affected by the change (larger α lowers the difference in values between an incumbent

and a potential entrant), the net effect is still necessarily positive; the increased chance of

becoming a continuing incumbent today more than compensates for the increased chance

of being displaced tomorrow.

3. Applications

In this section, we study several models of antitrust policy toward speciÞc practices as

an application of the results of Section 2. The models are all versions of the �quality

13For example, this will always be true whenever VE = 0 (say, because of a constant returns to scale
R&D technology) and πm and πI are non-negative.
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ladder� models introduced in the recent literature on economic growth (e.g., Aghion and

Howitt [1992]; Grossman and Helpman [1991]). Before turning to these applications, we

Þrst introduce a basic quality ladder model (in which antitrust policy plays no role) to

serve as a benchmark.

3.1. A quality ladder model

There are N + 1 Þrms and a continuum of inÞnitely-lived consumers of measure 1 who

may consume a nonstorable and nondurable good with production cost c ≥ 0. R&D

may improve the quality of this good and consumers value �generation j� of the good at

vj = v+j ·∆. At any time t, one Þrm� the current �incumbent� � possesses a perfectly

effective and inÞnitely-lived patent on the latest generation product jt. Likewise, at time t

there is a patentholder for each of the previous generations of the product (jt−1, jt−2, ...).
We assume, as in Section 2, that at time t only Þrms other than the incumbent in the

leading technology � the potential entrants � can invest in developing the generation

jt + 1 product. One implication of this assumption is that in each period t the holder of

the patent on generation jt−1 is a Þrm other than the current incumbent, who holds the
patent on the current leading generation jt. We assume that at time t, the Þrms engage

in Bertrand competition to make sales. Thus, πE = πm = ∆ and πI = 0.14 Specializing

(IB) to this case we have

W = r

"
∆(1− δ) + δ[s∆+ (1− s)∆+ c(φ)]

1− δ + δ(s+ φr)
#

= r

"
∆+ δc(φ)

1− δ + δ(s+ φr)
#
. (3.1)

As before, the equilibrium innovation rate φ satisÞes φ ∈ argmaxψ∈[0,1] {ψW − c (ψ)}.
Since we now have a fully-speciÞed consumer side (unlike in Section 2), we can com-

14We focus here on the undominated equilibrium in which the incumbent (who makes no sales) charges
a price equal to cost and the entrant with technology jt + 1 charges a price of ∆.
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pare the equilibrium innovation rate to the rate that maximizes aggregate welfare. To

this end, observe that a technological advancement in period t raises gross consumer

surplus in every subsequent period by ∆. The present discounted value of this change is³
∆
1−δ

´
. A Þrm who innovates is critical for advancing the technology in that period if and

only if no other Þrm has successfully innovated. Thus, if the socially optimal (symmetric)

innovation rate is φ◦, the �Social Innovation Prize� is given by

WS = (1− φ◦)N−1
µ
∆

1− δ
¶
, (3.2)

which deÞnes a downward-sloping Social Innovation BeneÞt Curve. The socially optimal

innovation rate φ◦ must lie at an intersection of this Social Innovation BeneÞt curve and

the Innovation Supply Curve depicted in Figure 2.1. Since the Innovation Supply Curve

is (weakly) upward sloping, there is at most a single intersection. Thus, the relation

between φ◦ and φ can be determined by the relation between W and WS.

In general, the equilibrium level of innovation may be either higher or lower than

the level that maximizes social surplus because W may be either higher or lower than

WS. This is due to two distortions: First, there is a �Schumpeterian effect� because an

innovator is eventually replaced even though his innovation raises surplus indeÞnitely.

To see this effect, it is useful to deÞne the value of a new patent to be

P ≡
"

∆+ δc(φ)

1− δ + δ(s+ φr)
#
.

Doing so, we see that the private innovation prize is W = rP . Now note that VE ≥ 0 if
and only if φrP − c(φ) ≥ 0, which implies using (3.1) that

P ≤ ∆

1− δ + δs ; (3.3)

16



in any equilibrium with VE ≥ 0.15 Thus, we see that P ≤ ∆
1−δ , so that the value of a

new patent never exceeds the social value of a technological advancement, ∆
1−δ . On the

other hand, a �business stealing effect� is also present, since a potential entrant is sure

to get a patent when all other Þrms have failed, but also gets the patent in some cases

when another Þrm has succeeded; only in the latter case, however, has the innovation

contributed to social surplus. This effect is captured by the fact that, when the patent

is awarded randomly to one of the innovators, r ≥ (1− φ)N−1.16 Note that when N = 1

only the former effect is present [since r = 1 = (1− φ)0], in which case the equilibrium
rate of R&D is less than the level that maximizes social surplus. Likewise, as δ → 1,

the socially optimal R&D rate φ◦ → 1, while the equilibrium level is bounded below this

level provided that assumption (A2) holds with δ = 1. On the other hand, if δ → 0 and

N > 1, the equilibrium rate will exceed φ◦.

3.2. Long-term (exclusive) contracts

We now consider a model in which the incumbent can sign consumers to long-term

contracts. We normalize the total number of consumers in each period to 1. Suppose

that in each period t, the incumbent can offer long-term contracts to a share βt+1 of

period t+ 1 consumers. The contracts specify a sale in period t+ 1 at a price qt+1 to be

paid upon delivery. (In our simple model, this is equivalent to an exclusive contract that

prevents the consumer from buying from the entrant, subject to some irrelevant issues

with the timing of payments.) The antitrust policy restricts the proportion of consumers

15In particular, since φrP ≥ c(φ) when VE ≥ 0, we have

P =
W

r
≤
µ
1

r

¶
r

·
∆+ δφrP

1− δ + δ(s+ φr)
¸

which implies (3.3).
16In Aghion and Howitt [1992], two additional distortions are present: an �appropriability effect� (an

incumbent monopolist captures less than his full incremental contribution to social surplus in a period)
and a �monopoly distortion� effect (an incumbent produces less than the socially optimal quantity in
each period). These two distortions are absent here because of our assumption of homogeneous consumer
valuations and Bertrand competition.
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that can be offered long-term contracts: βt+1 ≤ 1 − α. We assume that the production
cost c exceeds the quality increment ∆, so that an entrant cannot proÞtably make a sale

to a customer who is bound to a long-term contract.

The timing in period t is:

� Stage t.1: Each potential entrant i observes the share of captured customers βt
and chooses its innovation rate φit. Then innovation success is realized.

� Stage t.2: Firms name prices pit to free period t consumers

� Stage t.3: Free period t consumers accept/reject these offers.

� Stage t.4: The Þrm with the leading technology chooses to offer to a share βt+1 ≤
1−α of period t+1 consumers a period t+1 sales contract at price qt+1 to be paid
upon delivery.

� Stage t.5: Period t+1 consumers accept/reject these contract offers (they assume
that they have no effect on the likelihood of future entry).17

We look at Markov perfect equilibria. In particular, we focus on equilibria in which

potential entrants in stage t.1 condition their innovation choices only on the current share

of captive customers βt, and in which the choices at all other stages are stationary. (Note

that since period t contracts expire at the end of that period, there is no relevant state

variable affecting the contracting choice of the leading Þrm at stage t.4.)

It is immediate that in any such equilibrium, the prices offered to free customers

in any period t are c + ∆ by the Þrm with the leading technology jt, who wins the

sale, and c by the Þrm with technology jt − 1. Now consider a consumer�s decision of
whether to accept a long-term contract. If in period t the expected innovation rate in

period t + 1 is st+1, a period t + 1 consumer who rejects the leading Þrm�s long-term

17We assume throughout that consumers all accept if accepting is a continuation equilibrium (we do
not allow consumers to coordinate). The leading Þrm could achieve this by, for example, committing to
auction off the desired number of long-term contracts.
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contract offer anticipates getting the period t surplus level v + (jt − 1)∆ − c plus an
expected gain in surplus of st+1∆ due to the possibility of technological advancement

in period t + 1. Thus, he will accept the contract if and only if the price qt+1 satisÞes

v + jt∆ − qt+1 ≥ v + (jt − 1 + st+1)∆ − c. Hence, the maximum price the incumbent

can receive in a long-term contract is qt+1 = c+ (1− st+1)∆, which leaves the consumer
indifferent about signing.

How many consumers will the leading Þrm sign up in period t? Observe Þrst that

if the aggregate innovation rate st+1 were independent of βt+1, then the leading Þrm

would be indifferent about signing up an extra consumer: its period t expectation of

the proÞt from a free consumer in period t + 1 is (1 − st+1)∆, which exactly equals its
maximal expected proÞt from a long-term contract. However, each entrant�s optimal

innovation choice φt+1 is decreasing in βt+1, because it reduces the proÞts a successful

entrant can collect in period t + 1.18 Therefore, the incumbent will sign up as many

long-term customers as the antitrust constraint allows, i.e., βt+1 = 1−α in every period.
This implies, in particular, that the equilibrium innovation rate st is also stationary. We

can therefore Þt this model into our basic model by taking

πm(α, s) = α∆+ (1− α)(1− s)∆ (3.4)

πI(α, s) = (1− α)(1− s)∆
πE(α, s) = α∆.

Observe, Þrst, that in this model an increase in α does indeed raise πE. More signiÞ-

18Formally, the equilibrium innovation rate of a potential entrant in period t + 1 satisÞes φt+1 ∈
argmaxψ∈0[,1] ψr (φt+1, N)

£
(1− βt+1)∆+ δ

¡
V t+2
I − V t+2

E

¢¤
, where V t+2

I , V t+2
E are the continuation val-

ues at the start of period t + 2 which are independent of βt+1. Since r (φt+1, N) is decreasing in φt+1,
there is a unique solution to this Þxed-point problem, and by Theorem 1 of Milgrom and Roberts [1994],
this solution is decreasing in βt+1.
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cantly,

[sπI(α, s) + (1− s)πm(α, s)] = (1− s)α∆+ (1− α)(1− s)∆ = (1− s)∆.

Thus, holding φ Þxed, the expected proÞt of a continuing incumbent is independent of

α. Thus, we see immediately that condition (2.2) is satisÞed, and so we have:

Proposition 3.1. In our basic model of long-term (exclusive) contracts, restricting the

use of long-term contracts encourages innovation.

An alternative way of seeing the result is to observe that an increase in α raises both

the joint proÞt upon entry πE + πI , as well as the proÞt of an uncontested monopolist

πm, and so must raise innovation. Joint proÞts upon entry are increased because the

incumbent has had to offer a discount below a price of∆ to induce the captured consumers

to sign (he is getting them to agree to buy a worse product than the entrant�s with

probability s). Uncontested monopoly proÞts are increased by an increase in α because,

given that entry has not occurred, the incumbent is better off the fewer consumers it has

signed up at discounted prices.

Consider now the welfare effects of a once-and-for-all increase in the policy α. Note,

Þrst, that the increase raises consumer surplus: consumers are indifferent about signing

exclusives when the innovation rate is held Þxed, but an increase in the innovation rate

delivers to them higher-quality goods at the same prices. The current incumbent is hurt

by the change: it would not be affected if the innovation rate were held Þxed, but it is

hurt by the increase in the innovation rate which speeds its replacement. What about

the sum of consumer surplus and current incumbent proÞts? Intuitively, an innovation

in period t reallocates surplus α∆ from the incumbent to period t consumers. However,

in subsequent periods the innovation confers an expected beneÞt ∆ to consumers but

at an expected cost to the incumbent that is less than ∆ as long as the probability of

future displacement is positive (i.e., s > 0 ). Finally, consider the effects on the potential
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entrants. Since we are staying on the upward-sloping IS curve, the increase in φ caused

by the increase in α increasesW . This implies that each potential entrant becomes better

off. This reasoning leads to the following result:

Proposition 3.2. A once-and-for-all restriction on the share of long-term (exclusive)

contracts raises consumer surplus, the proÞts of potential entrants, and aggregate welfare.

It reduces the current incumbent�s proÞts.

Proof. We consider in turn the change in the payoffs of entrants, the current incumbent,

consumers, and the current incumbent plus consumers.

Potential Entrants: If innovation increases W must have increased. Using (VE)

and (IS), we see that

(1− δ) VE = max
ψ∈[0,1]

{ψr(φ, N)W − c (ψ)} ,

which implies that a potential entrant�s value VE has increased.

Current Incumbent: We Þrst argue that the current incumbent�s value falls. To

see this, observe from (VI) that we can write

(1− δ)VI = [(1− s)πm + sπI ]− sδ(VI − VE)
= [(1− s)πm + sπI ]− s

·
W

r
− πE

¸
= ∆− s(1− α)∆− s

µ
W

r

¶
,

which decreases with the change in α since s and W increase, and r decreases.

We next compute a convenient lower bound on the value change of the continuing

incumbent. A policy change at the start of some period τ changes the current incumbent�s

proÞts only beginning in the next period. The current incumbent�s continuation payoff

in the next period is δ[s0VE+(1−s0)VI ], where s0 is the innovation rate before the policy
change (i.e., the probability of innovation in period τ) and VE and VI are the values after
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the policy change (i.e., at the start of period τ +1). Since VE has gone up, a lower bound

on the change in the incumbent�s payoff is the change in δ(1−s0)VI . From equation (VI)
we see that we can write

(1− δ + δs)VI = [(1− s)πm + sπI ] + δsVE
= [(1− α)(1− s)∆+ (1− s)α∆] + δsVE
= (1− s)∆+ δsVE.

Again, since VE has increased, a lower bound on the change in the current incumbent�s

payoff is the change in
δ(1− s0)(1− s)∆
(1− δ + δs) . (3.5)

Consumers: Consumer welfare does not change until period τ + 1 either. Since

every consumer is always indifferent between signing an exclusive and being free, we can

derive consumer welfare from period τ + 1 on by assuming that all consumers are free.

Thus consumer welfare starting in period τ + 1 is

δ[(vjτ+s0∆−c−∆)+s
∆

1− δ ]+δ
2[(vjτ+s0∆−c−∆)+s

∆

1− δ ]+... = δ[(vjτ−c−∆)+s
∆

(1− δ)2 ],
(3.6)

where vτ is the value of the quality of the leading good at the start of period τ .

Sum of Current Incumbent and Consumers: Adding (3.5) and (3.6) a lower

bound on the change in the sum of consumer plus current incumbent payoffs is given by

the change in
δ(1− s0)(1− s)∆
(1− δ + δs) + δs

∆

(1− δ)2 ,

which is increasing in s.

It is perhaps surprising that the welfare effect of an increase in α is necessarily positive,

given that the equilibrium innovation rate may be above the Þrst-best level due to business

stealing (Section 3.1). Note, however, that long-term contracts involve an inefficiency
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since the incumbent makes sales of an old technology to captive customers. Thus, even if

an increase in the share of captive customers brings a socially excessive innovation rate

closer to the Þrst-best level, the waste effect dominates and aggregate welfare is reduced.

(Indeed, observe that potential entrants, who directly suffer from the business-stealing

effect, are necessarily better off when α increases.)

3.3. Predatory pricing

We next consider a model of predatory pricing, in which the entrant�s probability of

survival after its Þrst production period is an increasing continuous function λ (πE) of

its Þrst-period proÞt. (This could be due to the entrant�s Þnancial constraints in an

imperfect credit market, as in Bolton and Scharfstein [1990].) In this situation, the

incumbent will be willing to price below c in the period following entry to increase the

likelihood of forcing the entrant out of the market. To see this, consider Þrst what the

pricing equilibrium would be absent any antitrust constraint. In any such equilibrium,

the entrant still wins, and consumers are indifferent between the two Þrms� products: the

incumbent charges price p and the entrant charges price p+∆. This is an equilibrium if

and only if p satisÞes

p ≤ c− [λ(p+∆− c)− λ(0)] (VI − VE) ≤ p +∆.

The Þrst inequality ensures that the incumbent prefers to lose at price p [rather than

undercutting the price by ε, losing money on the sale, but increasing his chances of

survival by λ(p+∆− c)− λ(0)]. The second inequality ensures that the entrant prefers
to win at price p+∆. Assuming that VI−VE > 0, the middle expression is decreasing in
p. Note also that the second inequality holds whenever p ≥ c−∆ and the Þrst inequality
holds strictly at p = c−∆. Thus, at the highest equilibrium price p∗ the Þrst inequality

binds, i.e.

p∗ = c− [λ(p∗ +∆− c)− λ(0)] (VI − VE) .
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Note that p∗ ∈ (c−∆, c). We focus on the equilibrium in which the incumbent charges

p∗, since this strategy for the incumbent weakly dominates charging any p < p∗.

Now consider an antitrust policy that imposes a price ßoor α < c on the incumbent.

Suppose that the ßoor is binding, i.e., p∗ < α. In this case, πE(α) = α+∆−c, πI(α) = 0,
and πm(α) = ∆: thus, a higher α raises πE(α) upon entry, does not affect πI(α) or πm(α),

and raises λ (α). If the policy only had an effect on πE but not on λ, then, by (2.2),

the policy would stimulate innovation. However, the policy also increases the entrant�s

probability of survival λ. Recall from the argument Subsection 2.4 that this effect also

stimulates innovation. Thus, we conclude that a restriction on predatory pricing will

stimulate innovation.19

As in the model of long-term contracts, an increase in α holding s Þxed eliminates an

inefficiency, here the inefficient loss of a new innovation. However, unlike the long-term

contracting model, we cannot conclude that an increase in α necessarily raises aggregate

welfare. To see one example in which welfare falls when α increases, suppose that the

probability of survival λ(·) is constant at λ around α + ∆ − c. Then a small increase
in αwill raise the price the entrant receives in his Þrst period in the market (and lower

consumers� payoffs in that period), have no effect on an entrant�s survival probability, and

will raise the level of R&D. Because the Þrst effect is a pure transfer, the overall effect in

welfare will be determined simply by whether we have too much or too little R&D given

the survival rate λ, which can go either way just as in Section 3.1.20 By way of contrast,

if we instead have a perfectly inelastic innovation supply, α affects aggregate welfare only

through an increased probability of the entrant�s survival, which unambiguously raises

welfare whenever λ(·) is strictly increasing.

19In a more general model with differentiated products, predation would make both the entrant and
incumbent lose money. Thus, increasing α would raise both Þrms� proÞts as well as the entrant�s
probability of survival, and so would again increase innovation.
20The reason we cannot use an argument like that leading to Proposition 3.2 is that the price increase

has a direct negative effect on consumers plus the current incumbent; in contrast, in the long-term
contracting model, all direct effects on the consumers plus the current incumbent were positive.
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3.4. Voluntary deals

A simple implication of Proposition 2.1 is that deals between the entrant and incumbent

that are advantageous to both Þrms are good for innovation. As an example, imagine that

in our long-term contracting model the incumbent can license a new entrant�s technology

for serving his captive consumers. SpeciÞcally, assume that the incumbent is then able to

make a take-it-or-leave-it offer to these captive buyers, offering to give them instead the

entrant�s better product for an additional payment of ∆. The incumbent and the entrant

split the gain of (1−α)∆ from the agreement. Under these assumptions, both πI and πE
will increase, while πm will be unaffected. As such, Proposition 2.1 tells us that the rate

of innovation will increase if such deals are allowed. Moreover, using similar reasoning to

that in Proposition 3.2, we can see that allowing such deals will also increase aggregate

welfare.21

As another example, imagine that the incumbent and the entrant are allowed to

collude in their pricing to free buyers in the period in which the entrant enters. Thus,

the entrant now sells to these buyers at a price of 2∆. We assume that the proÞt gain of

α∆ is split between the entrant and current incumbent through a side payment. In this

case, πE increases by α∆/2, πI increases from (1−α)(1−s)∆ to (1−α)∆ (free buyers no
longer receive a surplus gain in the period of entry and therefore are willing to agree to

a long-term contract at no discount), and πE increases from (1−α)(1− s)∆+α∆ to ∆.
Thus, again the rate of innovation increases. In this case, however, the welfare effects are

not clear. We cannot use the same type of argument as in Proposition 3.2 to show that

welfare increases because the direct effect of the change on the current incumbent plus

consumers is negative. Indeed, observe that there is no direct efficiency effect arising from

this collusive arrangement; it is merely a transfer from consumers to the Þrms. Thus, the

sign of the effect on aggregate welfare is determined simply by whether we were initially

21As in the long-term contracting model, both the direct effect of the policy change and the indirect
effect of the induced increase in innovation on the current incumbent plus consumers is positive. Since
potential entrants must again be better off if the rate of innovation has increased, this implies that
aggregate welfare has increased.
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in a situation of over- or under-investment in R&D relative to the Þrst-best.22

3.5. Uncertain innovation size and selection effects

Up to this point, we have considered models in which the nature of an innovation was

Þxed and antitrust policy could affect only the rate at which such innovations were

discovered. In this section, we consider an extension of the long-term contracting model

in which innovations are random and innovators must incur costs to bring them to market

quickly. In such a setting, antitrust policy can affect not only the rate of discovery, but

also the speeds with which different types of innovations make it to the market. Thus,

antitrust policy also involves �selection effects.� Intuitively, some innovations may bring

only small beneÞts to their innovators, but may create large costs for the incumbents

they replace. This may lead to circumstances in which more protective antitrust polices

may retard innovation.

To explore this possibility, we consider an extension of the long-term contracting

model in which a new innovator must pay K > 0 to enter the market immediately. If he

does not incur this cost, he enters in the following period at no cost. We assume that the

distribution of innovation sizes ∆ is given by the cdf F (·) and for convenience we deÞne
G(∆) ≡ 1− F (∆).
To begin, observe that in this setting, if α is the share of free customers, a new

innovator will enter immediately if and only if his innovation size ∆E satisÞes α∆E ≥ K,
or equivalently, ∆E ≥ b∆(K,α) ≡ K

α
.

Consider now a consumer�s decision of whether to accept a contract from an incumbent

whose product�s value is vI and whose innovation size was∆I , when the innovation success

rate is s and the cut-off type for immediate entry is b∆. If the consumer accepts he gets
vI − qt+1, while if he rejects he gets (vI −∆I − c) + sG( b∆). Hence, the incumbent will
charge qt+1 = c + [1− sG( b∆)]∆I .

22In a model with more general demand functions there would be an additional efficiency loss from
the collusive deal because of increased pricing distortions.
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This gives rise to the following proÞt functions:

πm(α,∆I) = [α∆I + (1− α)(1− sG)∆I ] (3.7)

= [1− (1− α)s(1− F )]∆I
πI(α,∆I) = [αF∆I + (1− α)(1− sG)∆I ]

= [αF + (1− α)(1− sG)]∆I
πE(α,∆E) = Max{α∆E −K, 0}

It is straightforward to see that condition (2.2) extends to the case of uncertain

innovation, where now innovation increases (decreases) if

π0E (α) + δ

"
(1− s)π0m (α) + sπ0I (α)

1− δ(1− s)
#
≥ (≤)0 (3.8)

at all feasible s, where the π functions are the expected proÞt functions (the expectation

is taken with respect to the innovation size ∆). Since (3.7) gives us expected proÞt

functions of

πm(α) = [1− (1− α)s(1− F )]∆I

πI(α) = [αF + (1− α)(1− sG)]∆I

πE(α) =
Z ∞
K
α

(α∆E −K)f(∆E)d∆E,

we have:

Proposition 3.3. In the long-term (exclusives) model with random innovation size and

costs of rapid implementation, restricting the use of long-term contracts increases (de-

creases) the rate of innovation s if
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Z ∞
K
α

∆f(∆)d∆E −
Ã

δ

1− δ + δs
!
sf(

K

α
)
µ
K

α2

¶
∆I ≥ (≤)0 (3.9)

at all feasible s.

Substituting b∆ = K
α
and rearranging, (3.9) can be written as

Ã
α

f(K
α
) b∆

!ÃR∞b∆ ∆f(∆)d∆E

∆I

!
>

Ã
δs

1− δ + δs
!
, (3.10)

This gives us the following result:

Corollary 3.4. In the long-term (exclusives) model with random innovation size and

costs of rapid implementation, restricting the use of long-term contracts increases the

rate of innovation s if f ≈ 0. It lowers the rate of innovation if α > 0, the support of ∆
is bounded with f > f > 0 on this support, and F ( b∆) ≈ 1.
It is useful to decompose the effect of a change in α in the current model into two

effects, the direct effect of the change in α holding the cut-off type b∆ Þxed, and the

indirect effect of the change in b∆.
Consider the Þrst of these. Just as in the basic long-term (exclusive) contracting

model of Section 3.2, the expected proÞt of a continuing incumbent, sπI + (1− s)πm =
[1 − s(1− F ( b∆)]∆, is unaffected by a change in α holding b∆Þxed. On the other hand,
the entrant�s expected proÞt upon successful innovation, πE, continues to be increasing

in α, just as in the basic model, although here as F ( b∆)→ 1, this effect also approaches

zero.

Now consider the effect of a decrease in the cut-off type b∆. By the envelope theorem,
this has no effect on the expected proÞt of a successful innovator, πE, since the marginal

type b∆ who is entering is earning zero, but reduces the expected proÞt of a continuing

incumbent, [1− s(1− F ( b∆)]∆.
To understand Corollary 3.4 observe that when f( b∆) ≈ 0, the indirect effect of a

change in the cut-off type is of negligible importance since there is almost no change
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in the likelihood of a successful innovator entering immediately. In this case, the direct

effect dominates and innovation increases with α, just as in the basic model. When F ( b∆)
is close to 1, on the other hand, the direct effect on πE approaches 0 and the indirect

effect dominates, and so the innovation rate falls.

Of course, even when an increase in α causes the rate of innovation s to fall, successful

innovations are more likely to come into the market quickly, since the cut-off type b∆
decreases. Thus, the welfare effects of this change in innovation seem unclear. One can,

however, establish the following result:

Proposition 3.5. Aggregate welfare increases if s increases (which implies that s[(1 −
F ) + δ

1−δ ] increases). Aggregate welfare decreases if s[(1 − F ) + δ
1−δ ] decreases (which

implies that s decreases).

Proof. See Appendix.

Observe that the discounted social value of a new innovation of size ∆ is exactly

s[(1− F ) + δ
1−δ ]∆. Proposition 3.5 tells us that if s decreases in response to an increase

in α sufficiently to make this value decline, we can be sure that aggregate welfare declines

as well. To examine whether this is possible, we explore an example.

Example 3.6. Let c(φ) = cφ and N = 1 (so that r = 1). Then in any equilibrium (IS)

takes the form

W = c.

From (IB) we have

r

Ã
θ + δcφ

1− δ + δ(s+ φr)
!
= c,

where

θ = πE(1− δ + δs) + δ [(1− s)πm(α) + sπI(α)] . (3.11)

So
rθ

1− δ + δs = c.
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Since r = 1 here, this tells us that s must adjust to keep θ
1−δ+δs constant when α changes.

Thus,

c = Z(α, s) ≡ πE(α) +
Ã

δ

1− δ + δs
!
[(1− s)πm(α) + sπI(α)]

=
Z ∞
K
α

(α∆E −K)f(∆)d∆E +
Ã

δ

1− δ + δs
!
[1− s(1− F (K

α
))]∆

=
Z ∞
K
α

(α∆E −K)f(∆)d∆E +
(Ã

δ

1− δ
!
∆−

Ã
δ

1− δ + δs
!
[(1− F (K

α
)) +

δ

1− δ ]s∆
)
.

Observe that the expression in curly barckets makes sense: the continuation payoff start-

ing in period t+1 of a successful innovatior in period t is the social PDV of his innovation

less the social PDV of the Þrst innovation to follow him. We now assume thatK ∼ U [0, 1]
and that α ∈ [K, 1]. We also let δ = .9 (a �period� is two years) and K = 0.3. Let-

ting s∗(α) denote the equilibrium value of s given α, Figures 3.1-3.3 graph the values of

s∗(α) and the per-period expected social value of innovation s∗(α)[(1 − δ)(1 − K
α
) + δ]

for c = 1, c = 1, and c = 3. In each case, the solid line is s∗(α), while the dashed

line is s∗(α)[(1− δ)(1− K
α
) + δ]. In each case, welfare appears to have an interior local

minimum, with the optimal policy either being a ban on long-term contracts (α = 1), or

unrestricted contracting (α = 0.3 = K). The optimum is unrestricted contracting when

c = 0.1, and is no long-term contracting at c = 3. It is less clear which is optimal when

c = 1. It is also interesting to observe that if the share of captive customers is currently

high, a move toward a less protective policy can be the best local change in policy, even

when a full ban on long-term contracting is globally optimal.
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The results for this model of random innovation size are related to those of O�Donohue

et al.�s [1998] study of patent policy in a model of continuing innovation. In particular,

O�Donohue et al. show that �leading patent breadth,� the requirement that an innovation

be at least a certain minimal amount better than the current leading technology to get

a patent, can increase the rate of innovation and aggregate welfare. Here, an increased

share of long-term contracts shifts upward the cut-off level of innovation that comes into

the market rapidly. In this sense, changing the share of long-term contracts has effects

like a change in the leading breadth of patent protection.23

This similarity between the effects of antitrust policy and patent policy raises the

question of how optimal antitrust policy should be affected by the ability to also optimally

set patent policy. While a full analysis is beyond our scope here, some insight can be

gained by considering the introduction of a simple leading breadth policy into our model.

Imagine, then, that we can also set directly a cut-off level ∆C such that no innovation

of size less than ∆C can come into the market immediately. Suppose we start with an

antitrust policy α which is less than 1 and an equilibrium cut-off level of b∆. It is clear
that nothing is changed if we set ∆C = b∆. However, once we have done this, we change
the effects of raising α. In particular, now an increase in α no longer has any effect on the

set of innovations being immediately implemented; only the �direct effect� of an increase

in α on proÞt levels remains, which we have seen causes innovation to increase. Moreover,

this increase in innovation without any change in the set of innovations being immediately

23That said, the reason leading breadth has an effect in O�Donohue et al [1998] is quite different from
here. Like our model, they posit a cost of implementing an innovation (in their case, at all rather than
one period earlier as here), but in their model, the rate of innovation is exogeneous. Increasing leading
patent breadth therefore necessarily reduces the number of innovations that can enter the market without
infringing an incumbent�s patent. They assume, however, that infringing innovations can be licensed to
the current incumbent, who then implements them. Since increased breadth increases the length of time
until the incumbent is displaced by a noninfringing innovation, the incumbent is more willing to license
infringing innovations the larger is leading breadth. In the limit, as leading breadth grows inÞnity large,
the incumbent �owns the entire quality ladder� and implements exactly the Þrst-best set of innovations.
In contrast, in our model the rate of innovation is endogeneous. Leading breadth can have a positive

welfare effect in a model such as ours for a different reason than that in O�Donohue et al.: because
innovations of small size generate little proÞt for an entrant but can destroy large proÞt levels for an
incumbent, R&D effort can be stimulated by excluding some small innovations from the market.
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implemented necessarily raises welfare. Hence, the optimal antitrust policy when patent

policy is available sets α = 1. Intuitively, while antitrust policy can be used to prevent

small innovations from coming to market, it does this only at the cost of introducing

inefficiency when larger innovations come to market. Patent policy can achieve the same

objective without this inefficiency, at least if innovation sizes are veriÞable so that a

leading patent breadth policy can be implemented.24

4. Incumbent Investment [incomplete]

The analysis above imposed the strong restriction that only potential entrants engaged in

R&D. Although useful for gaining insight, this assumption is clearly not respresentative

of most settings of interest. In this section, we explore how our conclusions are affected

when incumbent Þrms may also engage in R&D.

Allowing incumbent Þrms to engage in R&D has the potential to considerably com-

plicate the analysis. In particular, once we allow for incumbent investment, we need in

general to introduce a state space to keep track of the incumbent�s current lead over the

potential entrants. In general, the rates of R&D investment by the incumbent and its

challengers may be state dependent (see, for example, Aghion et. al. [2001]).

To date we have focused on two special cases in which R&D strategies are nonetheless

stationary. Although clearly restrictive, these two models do have the virtue of capturing

two distinct motives for incumbent R&D: (i) preventing displacement by an entrant,

and (ii) increasing the ßow of proÞts until displacement by increasing the lead over the

previous incumbent.

24A leading breadth policy could in principle also be implemented indirectly, by requiring an innovator
to pay a fee to gain access to the market, as in Llobet et al. [2000].
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4.1. R&D to prevent displacement

As earlier, we focus on the case of a Þxed number of Þrms N . The only change from

the model of Section 2 is that the incumbent may now do R&D. We denote the levels

of R&D for the incumbent and a potential entrant by φI and φE respectively, and the

respective cost functions by cI(φI) and cE(φE) (we allow for the fact that the cost of

achieving a discovery may differ between the incumbent and the potential entrants). In

this Þrst model, we assume that if the leading quality level in period t is jt, then quality

level jt − 1 is freely available to all potential producers. That is, it enters the public
domain. Thus, the incumbent never has a lead greater than one step on the ladder.

Thus, the only reason for an incumbent to do R&D is to try to get the patent on the

next innovation in cases where at least one potential entrant has made a discovery � that

is, to prevent its displacement. To capture this in the simplest possible way, we assume

that the incumbent gets the patent whenever it makes the discovery; that is, that the

incumbent wins all �ties�.25 With these assumptions, we need not keep track of any

states, and there is a stationary equilibrium.

Denoting by VI and VE the values of the incumbent and a potential entrant, we now

have:

VI = πm(α) + δVI + s(φE, N)(1− φI){πI(α)− πm(α) + δ(VI − VE)}− cI(φI) (4.1)

VE = δVE + φEr(φE, N)(1− φI){πE(α) + δ(VI − VE)}− cE(φE). (4.2)

25In the usual sort of (Poisson) continuous-time model considered in the R&D literature (see, e.g.,
Lee and Wilde [1980], Reinganum [1989], and Grossman and Helpman [1991]), the probability of ties
is zero, and so one might worry that our formulation here is dependent on a merely technical feature
of the discrete-time set-up. Indeed, in such a model, the incumbent would do no R&D here. However,
the usual continuous-time model relies on the implicit assumption that following an innovation, all Þrms
reorient their R&D activity immediately to the next technology level. If we were to instead use a
continuous-time model in which there is a Þxed time period after a rival�s success before which R&D
for the next technology level cannot be successful, then we would get effects that parallel those in our
discrete-time model (where the discount factor δ reßects how quickly R&D activity can be reoriented to
the next technology level.) Thus, our discrete-time formulation captures an arguably realistic feature of
the economics of R&D.
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Letting

WI ≡ s(φE, N) [πm(α)− πI(α) + δ(VI − VE)] (4.3)

and

WE ≡ r(φE, N)(1− φI){πE(α) + δ(VI − VE)}, (4.4)

we have φi ∈ argmaxψi∈[0,1] ψiWi−ci(ψi) for i = I,E.. Solving (4.1) and (4.2) for (VI−VE)
and substituting we get (suppressing arguments of functions)

WI =
µ
s

D

¶
{πm − (1− δ)πI + δ(1− φI)rφE(πm − πI − πE) + δ(cE − cI)}

WE =

Ã
r(1− φI)

D

!
{δπm + (1− δ)πE − δ(1− φI)s(πm − πI − πE) + δ(cE − cI)} ,

where D ≡ 1− δ + δ[1− φI(s+ rφE)].
In this setting where both the incumbent and potential entrants can do R&D we can

distinguish between the direct effects of a change in the policy α and the indirect effects.

For the incumbent, the former captures the change in its R&D incentives holding Þxed

the R&Dof potential entrants φE, and has the same sign as the change in WI caused

by the change in α holding (φI ,φE) Þxed. Similarly, the direct effect for the potential

entrants has the same sign as the change in WE caused by the change in α holding

(φI ,φE) Þxed.

Proposition 4.1. In the model of incumbent R&D to prevent displacement, the direct

effect of a more protective antitrust policy (an increase in α) on incumbent R&D is

positive if and only if

− π
0
I (α)

π0E (α)
≥ δ(1− φI)rφE
(1− δ) + δ(1− φI)rφE −

Ã
π0m (α)
π0E (α)

!Ã
1 + δ(1− φI)rφE

(1− δ) + δ(1− φI)rφE

!
(4.5)
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and is positive on potential entrant R&D if and only if

"
1 +

1− δ
δs(1− φI)

#
+

Ã
1− s(1− φI)
s(1− φI)

!Ã
π0m (α)
π0E (α)

!
≥ − π

0
I (α)

π0E (α)
. (4.6)

A few observations can be made about Proposition 4.1. First, note that the direct ef-

fects of a more protective antitrust policy on incumbent and potential entrant innovation

can never both be negative provided that π0m(α) ≥ 0, since in that case the righthand

side of (4.5) is less than 1, while the lefthand side of (4.6) is greater than 1. More strik-

ingly, when π0m(α) ≥ 0 and − π0
I(α)

π0
E(α)

≈ 1 both direct effects are positive. Intuitively, when

π0I (α) ≤ 0, a more protective antitrust policy can encourage incumbent innovation when
innovation is done to avoid displacement because it reduces the incumbent�s proÞts when

entry occurs, thus making avoiding that outcome all the more desirable for the incumbent

[the other effect, which leads to the ambiguity in (4.5) in general, is that it also reduces

the value of (VI − VE)]. Similarly, when π0m(α) ≥ 0 and π0I(α) ≤ 0, if δ(1 − φI)φE ≈ 0
(e.g., if the rate of either incumbent innovation or time discount is very high or the rate of

entrant innovation is very low) then the incumbent�s direct effect is necessarily positive.

The direct effects are not determinative, however, of the overall change in equilibrium

innovation rates, because there are interactions between the R&D levels of the incumbent

and potential entrants since the level of φi in general affects the valueWj (i 6= j; j = I, E).
It can be seen from (4.3) and (4.4) that when (πm−πI −πE) ≈ 0, the level of incumbent
innovation increases in φE, and the level of potential entrant innovation decreases in φI .

When this is so, and the direct effects are both positive, we know that the incumbent�s

innovation rate φI must increase with an increase in α.26

26More generally, when (πm − πI − πE) ≥ 0 the incumbent�s R&D level is increasing in φI , although
the direction of the indirect effect on potential entrants� R&D is in this case ambiguous.
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4.2. R&D to increase proÞt ßows

We next consider a model in which rivals do not get access to the second best technology

when the incumbent innovates. Thus, the incumbent can increase its ßow of proÞts by

innovating, until the time when it is displaced. SpeciÞcally, let k denote the number of

steps that the incumbent is ahead of its nearest rival (this is our state variable). The

variable k affects the incumbent�s proÞt ßow when entry does not occur, which we now

denote by πm(k,α) (it does not affect either πI or πE). We now make two assumptions

that will imply that there is an equilibrium in which the R&D levels of the incumbent and

potential entrants do not depend upon k. SpeciÞcally, we assume that πm(k,α) = kπm(k)

and that an entrant gets the patent whenever at least one entrant has made a discovery.

It is clear that there is a solution in which potential entrant R&D φE and value VE

are stationary. To begin, we allow that the incumbent�s R&D and value functions may

depend on k: φkI and V
k
I . In this case, we can write the value equations as

V kI = kπm + δV
k
I + s(φE, N){(πI − kπm) + δ[VE − V kI ]} (4.7)

+φkI [1− s(φE, N)]{[(k + 1)πm − kπm) + δ[V k+1I − V kI ]}− cI(φkI ),

for k ≥ 1, and

VE = δVE + φEr(φE, N) [πE + δ (VI(1)− VE)]− cE (φE) , (4.8)

while the equilibrium innovation rates satisfy

φkI ∈ arg max
ψkI∈[0,1]

ψkI [1−s(φE, N)]{[(k+1)πm−kπm)+δ[VI(k+1)−VI(k)]}−cI(ψkI ), (4.9)

φE ∈ arg max
ψE∈[0,1]

ψEr(φE, N) [πE + δ (VI(1)− VE)]− cE (ψE) . (4.10)

Now observe from (4.9) that φkI will be independent of k if the difference VI(k+1)−VI(k)
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is. Using (4.7) for k and k + 1 we see that

(1− δ)
h
V k+1I − V kI

i
= πm − s(φE, N){πm + δ[V k+1I − V kI ]}

+[1− s(φE, N)]
h
φk+1I {πm + δ[V k+2I − V k+1I ]}− φkI{πm + δ[V k+1I − V kI ]}

i
−cI(φk+1I ) + cI(φ

k
I ).

Hence, if φkI is independent of k, we have

h
V k+1I − V kI

i
=
πm(1− s)
1− δ + δs,

which is indepent of k. Hence, there exists an equilibrium in which the incumbent�s

innovation rate is independent of k, φI ≡ φkI , and [specializing (4.9) satisÞes

φI ∈ arg max
ψI∈[0,1]

ψI(1−s)
"
πm + δ

Ã
πm(1− s)
1− δ + δs

!#
−cI(ψI) = arg max

ψI∈[0,1]
ψIπm

·
1− s

1− δ + δs
¸
−cI(ψI).

(4.11)

Thus,

WI = πm

·
1− s

1− δ + δs
¸
. (4.12)

We next solve for WE. Subtracting the expression for VE from that for V 1I we have

(omitting arguments of functions for notational simplicity)

[V 1I −VE][1− δ+ δ(s+φEr)] = πm+ s(πI−πm)+φIπm
·

1− s
1− δ + δs

¸
−φErπE− (cI− cE).

Thus,

WE =

"
r

1− δ + δ(s+ φEr)
#(
πE[1− δ + δs] + δsπI + δ(1− s)

"
2− δ(1− s)
1− δ(1− s)

#
πm − δ(cI − cE)

)
.

(4.13)

Examing (4.12) and (4.13) we have
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Proposition 4.2. In the model of incumbent R&D to increase proÞt ßows, the direct

effect on incumbent R&D of a more protective antitrust policy (an increase in α) has the

same sign as π0m(α), while the direct effect on potential entrant R&D is positive if and

only if "
1 +

1− δ
δs

#
+
µ
1− s
s

¶Ã
π0m (α)
π0E (α)

!
≥ − π

0
I (α)

π0E (α)
. (4.14)

Once again we can get both direct effects to be positive; indeed, this is certain to be

the case if the increase in α raises bot hthe monopoly proÞt πm and the joint proÞt upon

entry πI + πE. Considering now the indirect effects, we see from (4.13) that the level of

incumbent R&D has no indirect effect on φE, while from (4.12) increases in the level of

potential entrant R&D (and, hence, s) reduce the level of φI .

5. Conclusion

To be added.

6. Appendix

Proof of Proposition 3.5: As before, a potential entrant�s value increases if and only

if s increases. We now consider the payoffs of the current incumbent, consumers, and the

sum of the current incumbent and consumers.

Current Incumbent: We look at the expected continuation payoff for an incumbent

of type ∆I starting in period τ + 1. As before this takes the form δ[s0VE + (1 − s0)VI ]
where now

(1− δ + δs)VI = [(1− s)πm + sπI ] + δsVE
= [1− s(1− F )]∆I + δsVE.

Consumers: Consider the consumers� expected continuation surplus starting in pe-
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riod τ + 1. Note that the Þrst innovation (beginning in period τ) gives a consumer gain

of ∆I , after that innovation give an expected gain of ∆. This can be written as

δ(1− s0)



n
(vτ − c−∆I) + s∆I [(1− F ) + δ

1−δ ]
o
+

δ


(vτ − c−∆I) + (1− s)s∆I [(1− F ) + δ

1−δ ]+

[1− (1− s)]s∆[(1− F ) + δ
1−δ ]

+
δ2 {} ...



+δs0



n
(vτ − c) + s∆[(1− F ) + δ

1−δ ]
o
+

δ
n
(vτ − c) + s∆[(1− F ) + δ

1−δ ]
o
+

δ2 {} ...


= δ

"
(vτ − c− (1− s0)∆I)

1− δ
#
+

δ(1− s0)



s∆I(1− F )+

δ(1− s)s∆I(1− F )+

δ2(1− s)2s∆I(1− F ) + ...


+

δ(1− s0)



s∆I
δ
1−δ+

δ(1− s)s∆I
δ
1−δ+

δ2(1− s)2s∆I δ
1−δ + ...


+

δ(1− s0)



δ[1− (1− s)]s∆[(1− F ) + δ
1−δ ]+

δ2[1− (1− s)2]s∆[(1− F ) + δ
1−δ ]+

δ3[1− (1− s)3]s∆[(1− F ) + δ
1−δ ] + ...


+
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δs0



s∆[(1− F ) + δ
1−δ ]+

δs∆[(1− F ) + δ
1−δ ]+

δ2s∆[(1− F ) + δ
1−δ ] + ...


= δ

"
(v0 − c− (1− s0)∆I)

1− δ
#
+

δ(1− s0)s∆I(1− F )
Ã

1

1− δ(1− s)
!
+

δ(1− s0)s∆I
δ

1− δ
Ã

1

1− δ(1− s)
!
+

δ(1− s0)s∆[(1− F ) + δ

1− δ ]δ
Ã

1

1− δ −
1− s

1− δ(1− s)
!
+

δs0s∆[(1− F ) + δ

1− δ ]
1

1− δ
= δ

"
(v0 − c− (1− s0)∆I)

1− δ
#
+

δ(1− s0)
Ã
s(1− F )
1− δ(1− s)

!
∆I +

(1− s0)∆I
δ

1− δ
Ã

δs

1− δ + δs
!
+

δ(1− s0)
Ã

δ

1− δ
!Ã

δs

1− δ + δs
!
s[(1− F ) + δ

1− δ ]∆+

δs0

µ
1

1− δ
¶
s[(1− F ) + δ

1− δ ]∆

= δ

"
(v0 − c− (1− s0)∆I)

1− δ
#
+

δ(1− s0)
Ã
s(1− F )
1− δ(1− s)

!
∆I +

(1− s0)∆I
δ

1− δ
Ã

δs

1− δ + δs
!
+

δ

(
(1− s0)

Ã
δ

1− δ
!Ã

δs

1− δ + δs
!
+ s0

µ
1

1− δ
¶)
s[(1− F ) + δ

1− δ ]∆.

Sum of Incumbent and Consumers: Adding these two expressions together we

get
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= δ

"
(vτ − c− (1− s0)∆I)

1− δ
#
+

δ(1− s0)
µ

1

1− δ + δs
¶
∆I +

(1− s0)∆I
δ

1− δ
Ã

δs

1− δ + δs
!
+

δ

(
(1− s0)

Ã
δ

1− δ
!Ã

δs

1− δ + δs
!
+ s0

µ
1

1− δ
¶)
s[(1− F ) + δ

1− δ ]∆

= δ

"
(vτ − c− (1− s0)∆I)

1− δ
#
+

(1− s0) δ

1− δ + δs
Ã
1 +

δs

1− δ
!
∆I +

δ

(
(1− s0)

Ã
δ

1− δ
!Ã

δs

1− δ + δs
!
+ s0

µ
1

1− δ
¶)
s[(1− F ) + δ

1− δ ]∆

= δ

"
(vτ − c− (1− s0)∆I)

1− δ
#
+

(1− s0)
Ã

δ

1− δ
!
∆I +

δ

(
(1− s0)

µ
1

1− δ
¶Ã

δs

1− δ + δs
!
+ s0

µ
1

1− δ
¶)
s[(1− F ) + δ

1− δ ]∆

= (vτ − c)
Ã

δ

1− δ
!
+

δ

(
(1− s0)

Ã
δ

1− δ
!Ã

δs

1− δ + δs
!
+ s0

µ
1

1− δ
¶)
s[(1− F ) + δ

1− δ ]∆,

from which follows the result.

Remark 1. The way to think about the expression above is the following: for sure, the

initial incumbent and the consumers together get (v0 − c) in every period. The Þrst
subsequent innovation and event merely is a transfer from the inital incumbent to the

consumers. Starting with the second innovation consumers get a further gain (and the

inital incumbent is unaffected). If an innovation happens in period τ which is true with

probability s0, the expected PDV of this is
³

1
1−δ

´
s[(1 − F ) + δ

1−δ ]∆ since every period
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from τ + 1 on we have a probability s of adding [(1−F ) + δ
1−δ ]∆. If, instead, there is no

innovation in period τ which is true with probability (1 − s0), then we must wait until
the 2nd innovation happens to start recording these gains. The expected PDV of this

starting in period τ + 1 is then

= 0 +

δ[s · s(1− F + δ

1− δ )∆] +

δ2[(1− (1− s)2) · s(1− F + δ

1− δ )∆] +
...

= s(1− F + δ

1− δ )∆
(

δ

1− δ −
δ(1− s)

1− δ(1− s)
)
.

The sum of these two expressions is exactly the last line above. The inital incumbent

plus consumers� joint value is increasing in s(1−F + δ
1−δ )∆] because this is the expected

value in each period to the consumer of innovation once one subsequent innovation has

occurred; it is increasing in s because this makes the Þrst subsequent innovation arrive

sooner in a probabilistic sense.
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